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Introduction

Introduction

In this module, we investigate some approaches to Monte Carlo investigation in structural
equation modeling.
There are several reasons for wanting to do Monte Carlo experiments.
We can use them to examine performance of model estimates, estimate power, and,
through the analysis of convergence and estimation failure, gauge the sample size
necessary to reduce the probability of iteration failure to an acceptable level.
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Monte Carlo Capabilities in Mplus

Monte Carlo Capabilities in Mplus

Mplus has some very general Monte Carlo capabilities.
On the other hand, the capabilities for organizing and analyzing the information produced
by a Monte Carlo run is rather limited.
Fortunately, we have the very flexible and powerful (and free) capabilities of R to come to
our rescue.
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Monte Carlo Capabilities in Mplus

Monte Carlo Capabilities in Mplus

We’ll begin by examining a simple run of 1000 replications in a single condition.
Later, we’ll discover how to expand on this to create an entire study.

James H. Steiger (Vanderbilt University) Monte Carlo Investigations 5 / 79



Monte Carlo Capabilities in Mplus A Basic Monte Carlo Run in Mplus

Monte Carlo Capabilities in Mplus
A Basic Monte Carlo Run in Mplus

Suppose we were interested in the performance of a confirmatory factor analysis model
when the data are multivariate normal and the model fits perfectly in the population.
This is a classic Monte Carlo analysis. A sample condition might involve a population
structure with 9 indicator variables, 3 factors, 3 variables per factor, no crossover
loadings, and equal loadings of 0.60.
Here’s how we might set this up in Mplus with a sample size of n = 100.
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Monte Carlo Capabilities in Mplus A Basic Monte Carlo Run in Mplus

Monte Carlo Capabilities in Mplus
A Basic Monte Carlo Run in Mplus

TITLE: MONTE CARLO 9x3 CONSTANT LOADING = 0.60 N = 50

MONTECARLO:

NAMES ARE Y1-Y9;

NOBSERVATIONS=50;

NREPS=1000;

SEED=12345;

MODEL POPULATION:

F1 BY Y1-Y3*0.60;

F2 BY Y4-Y6*0.60;

F3 BY Y7-Y9*0.60;

F1-F3@1;

Y1-Y9*.64;

F1 WITH F2-F3 *0.00;

F2 WITH F3*0.00;

MODEL:

F1 BY Y1-Y3*0.60;

F2 BY Y4-Y6*0.60;

F3 BY Y7-Y9*0.60;

F1-F3@1;

Y1-Y9*.64;

F1 WITH F2-F3 *0.00;

F2 WITH F3*0.00;
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Monte Carlo Capabilities in Mplus A Basic Monte Carlo Run in Mplus

Monte Carlo Capabilities in Mplus
A Basic Monte Carlo Run in Mplus

The first section establishes a model that is used to create the statistical population.
Each parameter must be provided with a start value that is used to generate the
population.
NREPS is the number of Monte Carlo replications, 1000 in this case. Mplus is going to
creat 1000 samples of size n = 50, run its estimation routine using the model shown in
the second part of the file, and save a summary of the output.
The second section of our input file shows the model that is actually used to analyze the
data. In this case, it is the same model that created the data.
We include, as starting values, the actual parameter values that were used to create the
data. These starting values should work very well, especially with larger sample sizes.
Let’s run our input file with Mplus, and examine the output.
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Monte Carlo Capabilities in Mplus A Basic Monte Carlo Run in Mplus

Monte Carlo Capabilities in Mplus
A Basic Monte Carlo Run in Mplus

Note one very important fact at the beginning of the output file.

Number of replications

Requested 1000

Completed 846

Value of seed 12345

This output tells us that, although we requested 1000 replications, only 846 were
completed.
Iteration evidently failed on 154 out of 1000 replications.
Examining the output helps explain why.
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Monte Carlo Capabilities in Mplus A Basic Monte Carlo Run in Mplus

Monte Carlo Capabilities in Mplus
A Basic Monte Carlo Run in Mplus

We’ll show output for just the first few replications that failed:

Error messages for each replication (if any)

REPLICATION 1:

WARNING: THE RESIDUAL COVARIANCE MATRIX (THETA) IS NOT POSITIVE DEFINITE.

THIS COULD INDICATE A NEGATIVE VARIANCE/RESIDUAL VARIANCE FOR AN OBSERVED

VARIABLE, A CORRELATION GREATER OR EQUAL TO ONE BETWEEN TWO OBSERVED

VARIABLES, OR A LINEAR DEPENDENCY AMONG MORE THAN TWO OBSERVED VARIABLES.

CHECK THE RESULTS SECTION FOR MORE INFORMATION.

PROBLEM INVOLVING VARIABLE Y4.

REPLICATION 2:

NO CONVERGENCE. NUMBER OF ITERATIONS EXCEEDED.

REPLICATION 3:

NO CONVERGENCE. NUMBER OF ITERATIONS EXCEEDED.

REPLICATION 6:

WARNING: THE RESIDUAL COVARIANCE MATRIX (THETA) IS NOT POSITIVE DEFINITE.

THIS COULD INDICATE A NEGATIVE VARIANCE/RESIDUAL VARIANCE FOR AN OBSERVED

VARIABLE, A CORRELATION GREATER OR EQUAL TO ONE BETWEEN TWO OBSERVED

VARIABLES, OR A LINEAR DEPENDENCY AMONG MORE THAN TWO OBSERVED VARIABLES.

CHECK THE RESULTS SECTION FOR MORE INFORMATION.

PROBLEM INVOLVING VARIABLE Y3.
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Monte Carlo Capabilities in Mplus A Basic Monte Carlo Run in Mplus

Monte Carlo Capabilities in Mplus
A Basic Monte Carlo Run in Mplus

As the output shows, some replications ended in a convergence failure, while others ended
with negative residual variances resulting in a residual covariance matrix that was not
positive definite.
Given the small sample size, the question naturally arises — is this kind of result typical
of a confirmatory factor analysis?
If so, what aspects of the analysis will be related to the severity of the problem?
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Creating a Systematic Monte Carlo Study

Creating a Systematic Monte Carlo Study

We discovered from our original Monte Carlo run that a substantial number of samples
failed to iterate to a successful solution.
This is not a result that we would want to have happen in a real world study.
The question naturally arises, “What factors are related to the probability of a failed
iteration””
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Creating a Systematic Monte Carlo Study

Creating a Systematic Monte Carlo Study

We could set up a set of Monte Carlo run files, like the one shown in the previous section,
and vary a group of parameters systematically across runs.
A number of potential factors come to mind for such a study. They might include the
sample size, the size of the factor loadings (and, concommitantly, the unique variances).
Other factors include the number of variables, the number of factors, whether or not
there are “crossover” loadings, etc.
Should we choose to examine several of these potential influences, we might end up with
hundreds of Monte Carlo runs, or even a thousand or more.
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Creating a Systematic Monte Carlo Study

Creating a Systematic Monte Carlo Study

R has available a facility for automatically generating model input files.
This capability, in the R package MplusAutomation, can be very useful for developing a
Monte Carlo study.
In this section, we describe how to convert a single Monte Carlo run file into a template
that MplusAutomation can automatically expand into a large number of model input
files, useful in a large Monte Carlo study.
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Creating a Systematic Monte Carlo Study Generating Input Files

Creating a Systematic Monte Carlo Study
Generating Input Files

The next slide has a “template” file that is used with the MplusAutomation package.
The initial section of the template file establishes some iterators, integer variables that
will be varied systematically through a range of values.
In this case, we see two iterators that will be used to vary sample size through 6 values,
and size of loading through 4 values.
Immediately after defining the iterators, we link some numerical values to them. For
example, we see that sample sizes will be 50,100,300,400,800, and 1600.
Following the template section is a typical Monte Carlo input file, with certain values
replaced by the variables that will be iterated through.
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Creating a Systematic Monte Carlo Study Generating Input Files

Creating a Systematic Monte Carlo Study
Generating Input Files

[[init]]

iterators = ns loading;

ns = 1:6;

loading = 1:4;

n#ns = 50 100 200 400 800 1600;

lambda#loading = 0.20 0.40 0.60 0.80;

vv#loading = .96 .84 .64 .36;

filename = "9x3_[[n#ns]]_[[lambda#loading]].inp";

outputDirectory = "D:/MC";

[[/init]]

TITLE: MONTE CARLO 9x3 CONSTANT LOADING = [[lambda#loading]] N = [[n#ns]]

MONTECARLO:

NAMES ARE Y1-Y9;

NOBSERVATIONS=[[n#ns]];

NREPS=1000;

SEED=12345;

MODEL POPULATION:

F1 BY Y1-Y3*[[lambda#loading]];

F2 BY Y4-Y6*[[lambda#loading]];

F3 BY Y7-Y9*[[lambda#loading]];

F1-F3@1;

Y1-Y9*[[vv#loading]];

F1 WITH F2-F3 *0.00;

F2 WITH F3*0.00;

MODEL:

F1 BY Y1-Y3*[[lambda#loading]];

F2 BY Y4-Y6*[[lambda#loading]];

F3 BY Y7-Y9*[[lambda#loading]];

F1-F3@1;

Y1-Y9*[[vv#loading]];

F1 WITH F2-F3 *0.00;

F2 WITH F3*0.00;
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Creating a Systematic Monte Carlo Study Generating Input Files

Creating a Systematic Monte Carlo Study
Generating Input Files

To generate many input Monte Carlo files, we simply run the command createModels

on our template file.
In a blink of an eye, all the input files will be created in the targe directory.
The next slide shows the contents of the file 9x3_1600_0.80.inp.
This file contains commands to run 1000 replications with a sample size of n = 1600, and
a loading of 0.80 for each factor.
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Creating a Systematic Monte Carlo Study Generating Input Files

Creating a Systematic Monte Carlo Study
Generating Input Files

TITLE: MONTE CARLO 9x3 CONSTANT LOADING = 0.80 N = 1600

MONTECARLO:

NAMES ARE Y1-Y9;

NOBSERVATIONS=1600;

NREPS=1000;

SEED=12345;

MODEL POPULATION:

F1 BY Y1-Y3*0.80;

F2 BY Y4-Y6*0.80;

F3 BY Y7-Y9*0.80;

F1-F3@1;

Y1-Y9*.36;

F1 WITH F2-F3 *0.00;

F2 WITH F3*0.00;

MODEL:

F1 BY Y1-Y3*0.80;

F2 BY Y4-Y6*0.80;

F3 BY Y7-Y9*0.80;

F1-F3@1;

Y1-Y9*.36;

F1 WITH F2-F3 *0.00;

F2 WITH F3*0.00;
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Creating a Systematic Monte Carlo Study Batch Running Input Files

Creating a Systematic Monte Carlo Study
Batch Running Input Files

We’ve generated 24 input files with our template.
Now we would like to run them. An easy way to do that is to use the
runModels_Interactive() command.
This command opens a graphical interface and runs all your model input files for you.
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Creating a Systematic Monte Carlo Study Batch Running Input Files

Creating a Systematic Monte Carlo Study
Batch Running Input Files

It took only about 10 minutes for all 24 files to run on one of my faster computers.
The MplusAutomation package has some capabilities for going through output and
extracting parameter values. This capability appears to be extremely rudimentary, but still
useful in some contexts. It is primarily geared toward extracting actual model estimates
and fit statistics from a standard run, not from a Monte Carlo run.
In this case, we are primarily interested in extracting estimates for the probability of a
successful iteration from each of our 24 output files.
It took me less than 10 minutes to create the table shown on the next slide.
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Creating a Systematic Monte Carlo Study Proportion of Successful Convergence

Creating a Systematic Monte Carlo Study
Proportion of Successful Convergence

n 0.20 0.40 0.60 0.80

50 195 307 846 1000
100 179 469 985 1000
200 201 750 1000 1000
400 265 961 1000 1000
800 435 1000 1000 1000

1600 643 1000 1000 1000
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Creating a Systematic Monte Carlo Study Proportion of Successful Convergence

Creating a Systematic Monte Carlo Study
Proportion of Successful Convergence

How would you summarize the results of this little study, and the “prescriptions for
practice” that we might take from it?
What are some areas in which this study fails? Serious flaws? Lack of generality?
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Externalizing a Monte Carlo Study

Externalizing a Monte Carlo Study

In the previous section, we examined how the basic Monte Carlo capabilities of Mplus can
be used to generate a study of the performance of a modeling and estimation procedure
across a variety of conditions.
In this section, prompted by some comments and example files provided by Professor Cho,
we examine how one might extend these Monte Carlo capabilities in several ways:

1 Analysis of data generated by Mplus using alternative estimation methods not available in
Mplus

2 Analysis within Mplus of data generated by an alternative Monte Carlo data generation
program
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Externalizing a Monte Carlo Study Saving Monte Carlo Data for External Analysis

Externalizing a Monte Carlo Study
Saving Monte Carlo Data for External Analysis

The input file on the next slide demonstrates a modification of our previous Monte Carlo
file that saves the Monte Carlo data for reanalysis, either by Mplus or by an external
program.
Note that 2 lines have been added and are highlighted in red.
These lines instruct Mplus to save the files for all replications, and to name the files
according to a specific format.
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Externalizing a Monte Carlo Study Saving Monte Carlo Data for External Analysis

Externalizing a Monte Carlo Study
Saving Monte Carlo Data for External Analysis

TITLE: MONTE CARLO 9x3 CONSTANT LOADING = 0.60 N = 50

MONTECARLO:

NAMES ARE Y1-Y9;

NOBSERVATIONS=50;

NREPS=1000;

SEED=12345;

REPSAVE = ALL; !Save data from ALL replications

SAVE = C:/data/sim_*.DAT; !Save data in files sim1.dat,..,sim1000.dat

MODEL POPULATION:

F1 BY Y1-Y3*0.60;

F2 BY Y4-Y6*0.60;

F3 BY Y7-Y9*0.60;

F1-F3@1;

Y1-Y9*.64;

F1 WITH F2-F3 *0.00;

F2 WITH F3*0.00;

MODEL:

F1 BY Y1-Y3*0.60;

F2 BY Y4-Y6*0.60;

F3 BY Y7-Y9*0.60;

F1-F3@1;

Y1-Y9*.64;

F1 WITH F2-F3 *0.00;

F2 WITH F3*0.00;
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Externalizing a Monte Carlo Study Analyzing Monte Carlo Data from a Sequence of External Files

Externalizing a Monte Carlo Study
Analyzing Monte Carlo Data from a Sequence of External Files

The illustration above shows how to get Mplus to generate data and save each replication
in a separate file, possibly for external analysis.
Mplus can also be instructed to analyze data from a sequence of external files, analyze
the data and collect the analysis results within a Monte Carlo analysis summary.
Here on the next slide is an example from Professor Cho showing how Mplus can analyze
a sequence of files.
Note that a list of file names must be provided in a summary file.
In this case, Mplus created the external files and the filename list.
However, if Mplus cannot create data that meets your specifications, you could write an
external program in R, save the data for each Monte Carlo replication to individual data
files with the same names as those produced by Mplus, and use the Mplus-generated list
of file names.
Of course, using your knowledge of R, you could also program R yourself to generate the
file name list!
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Externalizing a Monte Carlo Study Analyzing Monte Carlo Data from a Sequence of External Files

Externalizing a Monte Carlo Study
Analyzing Monte Carlo Data from a Sequence of External Files

TITLE: CFA estimation

DATA: FILE IS sim_list.dat; !A file containing a list

!of Data Files to be analyzed.

TYPE = MONTECARLO; !These data are to be analyzed

!and compiled as a Monte Carlo Study.

VARIABLE: NAMES ARE Y1-Y9;

MODEL:

F1 BY Y1-Y3*0.60;

F2 BY Y4-Y6*0.60;

F3 BY Y7-Y9*0.60;

F1-F3@1;

Y1-Y9*.64;

F1 WITH F2-F3 *0.00;

F2 WITH F3*0.00;
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More Realistic Monte Carlo Studies

More Realistic Monte Carlo Studies

In assessing the performance of a model-fitting procedure, it is an important initial step
to discover whether the model works well when “fundamentals are sound” i.e., the model
is correct, the distributional assumptions are correct, and there are no missing data.
In the previous section, we discovered that even when almost everything is perfect, a
simple confirmatory factor analysis model with perfect simple structure, 9 indicator
variables, and 3 factors, will not generate correct results very often unless population
loadings are large and/or sample size is large.
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More Realistic Monte Carlo Studies

More Realistic Monte Carlo Studies

What happens when things aren’t perfect?
Comparatively few Monte Carlo studies have analyzed how estimation procedures behave
when the model doesn’t fit perfectly in the population, distributions aren’t multivariate
normal, or both.
In one sense, this is surprising: Dozens of statistical experts, from Box to Tukey to
Kendall, have stated that model fit is not, in general, perfect, and that it is unrealistic to
assume so.
What’s going on?
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More Realistic Monte Carlo Studies

More Realistic Monte Carlo Studies

In one sense, the situation is a natural consequence of the sociology of science and
publication priorities.
The situation in which fundamentals are perfect is relatively easy to specify, simulate, and
test.
The situation in which fundamentals are not perfect opens up a proverbial can of worms.
Many “Monte Carlo Studies” are actually very inadequate, simply comprising a couple of
non-representative situations (or even a simple analysis of one data set) involving perfect
fundamentals presented haphazardly during the presentation/promotion of a new and
interesting analysis.
In that context, the author is trying to escape quickly and easily with a publication —
he/she is not particularly motivated and/or can’t find the time to find conditions under
which the new analysis will not work.
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More Realistic Monte Carlo Studies

More Realistic Monte Carlo Studies

Even if the author is an iconoclast and a skeptic with time on his/her hands, there are
many issues to be resolved.
One is complexity. Another is space. Good Monte Carlo investigations that step outside
the bounds of “perfect fundamentals” require key judgments about

1 Which departures from perfection make the most sense to simulate, and
2 How best to present the complex information.

In the next sections, we discuss methods for simulating multivariate non-normality, and
simulating non-perfect models in a reasonable way.
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Simulating Multivariate Non-Normality

Simulating Multivariate Non-Normality

Suppose one wished to simulate continuous multivariate distributions that depart from
normality.
Two primary characteristics on which a continuous distribution may depart from normality
are skewness and kurtosis.
There are several available methods for simulating multivariate non-normality.
By far the most popular in the psychometric literature has been the method of Vale and
Maurelli(1983, Psychometrika), which built on earlier work by Fleishman(1978,
Psychometrika).
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Simulating Multivariate Non-Normality

Simulating Multivariate Non-Normality

We begin by describing the method of Fleishman(1978) for transforming a standard
normal random variable into one with a mean of 0, and standard deviation of 1, and a
desired skewness and kurtosis.
We then show how Vale and Maurelli(1983) adapted this method to generate multivariate
non-normal variables with desired correlation matrix and desired marginal skewnesses and
kurtoses.
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Simulating Multivariate Non-Normality The Third-Order Polynomial Transform

Simulating Multivariate Non-Normality
The Third-Order Polynomial Transform

We begin with some background on moments and cumulants.
The second-order central moments around the mean are

σij = E [(Xi − µi )(Xj − µj)] (1)

Correspondingly, the third- and fourth-order moments are

σijk = E [(Xi − µi )(Xj − µj)(Xk − µk)] (2)

and
σijkh = E [(Xi − µi )(Xj − µj)(Xk − µk)(Xh − µh)] (3)
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Simulating Multivariate Non-Normality The Third-Order Polynomial Transform

Simulating Multivariate Non-Normality
The Third-Order Polynomial Transform

The second through fourth order standardized moments are

ρij =
σij√
σiiσjj

(4)

ρijk =
σijk√

σiiσjjσkk
(5)

ρijkh =
σijkh√

σiiσjjσkkσhh
(6)

The normalized kurtosis of variable Xj is defined as

γ2j = ρjjjj − 3 (7)
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Simulating Multivariate Non-Normality The Third-Order Polynomial Transform

Simulating Multivariate Non-Normality
The Third-Order Polynomial Transform

Note that the moments are invariant under permutation of subscripts, i.e., ρ112 is the
same as ρ121 and ρ1122 is the same as ρ1212 etc.
Consequently, there are four distinct third-order and five distinct fourth-order moments
for a bivariate distribution: ρ111, ρ112, ρ122, and ρ222 and ρ1111, ρ1112, ρ1122, ρ1222, and
ρ2222.
The central moments µr of a random variable with expected value µ are defined as

µr = E (X − µ)r (8)
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Simulating Multivariate Non-Normality The Third-Order Polynomial Transform

Simulating Multivariate Non-Normality
The Third-Order Polynomial Transform

Although the moments of a random variable’s distribution are very useful for describing it,
other functions of the distribution may be more useful in theoretical derivatons.
In particular, the cumulants and their relationship to the moments are of great use.
Headrick(2002) gives the relationship between cumulants and central moments, and also
provides formulas for normalized cumulants. A normalized cumulant κ′r is defined as

κ′r =
κr√
κr2

=
κr
σr

(9)
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Simulating Multivariate Non-Normality
The Third-Order Polynomial Transform

The first 6 normalized cumulants may be expressed in terms of central moments as
follows (note that γ1 and γ2 are commonly employed measures of skewness and kurtosis):

κ′1 = 0 (10)

κ′2 = 1 (11)

κ′3 = γ1 =
µ3
σ3

(12)

κ′4 = γ2 =
µ4
σ4
− 3 (13)

κ′5 = γ3 =
µ5
σ5
− 10γ1 (14)

κ′6 = γ4 =
µ6
σ6
− 15γ2 − 10γ21 − 15 (15)

With the sample mean X̄ defined as usual as

X̄ =
1

N

N∑
i=1

Xi (16)
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Simulating Multivariate Non-Normality
The Third-Order Polynomial Transform

Common estimates of the standardized cumulants are

γ̂1 =

∑N
i=1(Xi − X̄ )3/N

(
∑N

i=1(Xi − X̄ )2/N)3/2
(17)

γ̂2 =

∑N
i=1(Xi − X̄ )4/N

(
∑N

i=1(Xi − X̄ )2/N)2
− 3 (18)

γ̂3 =

∑N
i=1(Xi − X̄ )5/N

(
∑N

i=1(Xi − X̄ )2/N)5/2
− 10γ̂1 (19)

γ̂4 =

∑N
i=1(Xi − X̄ )6/N

(
∑N

i=1(Xi − X̄ )2/N)3
− 15γ̂2 − 10γ̂21 − 15 (20)
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Simulating Multivariate Non-Normality
The Third-Order Polynomial Transform

We want to convert a standard normal variable Z to a nonnormal variable Y by a
non-linear functional transformation Y = f (Z ).
Fleishman’s (1978) 3rd order polynomial transform (PT3), also called the 3rd order power
method, uses a third-degree polynomial such that

Y = a0 + a1Z + a2Z
2 + a3Z

3 (21)

To ensure that the random variable Y has desired values γ1 and γ2 for skewness and
kurtosis, while mean and variance are standardized to 0 and 1, one must solve a set of
nonlinear equations for the coefficients a1, a2, and a3 from Equation 21 and later set
a0 = −a2:

σ2 = a21 + 6a1a3 + 2a22 + 15a23 = 1

γ1 = 2a2(3a21 + 4a22 + 36a1a3 + 135a23) (22)

γ2 = 3a41 + 60a21a
2
2 + 60a42 + 60a31a3 + 936a1a

2
2a3

+ 630a21a
2
3 + 4500a22a

2
3 + 3780a1a

3
3 + 10395a43 − 3
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Simulating Multivariate Non-Normality
The Third-Order Polynomial Transform

In general, these equations must be solved numerically.
As an example, a nonnormal Y with a mean of 0, a variance of 1, a skewness of 0, and a
kurtosis of 25, can be constructed as Y = 0 + 0.2553Z + 0Z 2 + 0.2038Z 3, i.e., with a
coefficient vector a = [0.0000, 0.2553, 0.0000, 0.2038]′.
The Fleishman (1978) method was in use for more than 30 years before Kraatz (2011)
noted that the coefficients are not uniquely defined: there are several solutions, some of
which yield transformations that are are monotonic, others non-monotonic.
The different distributions produced by the different coefficients can have radically
different shapes despite having identical means, standard deviations, skewnesses, and
kurtoses.
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Simulating Multivariate Non-Normality
The Third-Order Polynomial Transform

Not all skewness-kurosis combinations are possible.
It has been proven that for any univariate distribution, the range of possible
skewness-kurtosis combinations is limited by the equation

γ2 ≥ γ21 − 2 (23)

The resulting range of valid skewness-kurtosis combinations is visualized as the area
above the black line in the skewness-kurtosis plane in Figure 1.
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Figure 1 : Skewness-Kurtosis Limitations for PT3 (red), monotonic PT3 (green) g -and-h distribution
(blue), and all Possible Distributions (black)
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The range of available kurtosis values for a given skewness value is further restricted when
PT3 is employed. For PT3, kurtosis must satisfy constraints that can be approximated by
the following:

γ2 > 1.588γ21 − 1.139 (24)

Further, kurtosis also has an upper limit: When γ1 = 0, kurtosis cannot exceed
approximately 101.38, and this value of allowable kurtosis will be even lower for γ1 > 0.
The range of available skewness-kurtosis combinations for PT3 is approximately bounded
by the red continuous line in Figure 1.
Outside of that range, the equations in 22 do not have a real-valued solution.
Note that these boundaries were determined numerically by attempting to find solutions
to the set of equations in 22 for various values of γ1 and γ2.
The set of possible skewness-kurtosis combinations is even smaller for monotonic PT3
transformations and enclosed by the green line in Figure 1.
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We saw in our module on symmetric square roots that it is easy to transform independent
normal random variables to have a multivariate normal distribution with any desired
covariance matrix.
One simply linearly combines the independent normal random numbers with any
Gram-Factor of the desired Σ.
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Let z be a p × 1 random vector having a multivariate normal distribution with mean
vector 0 and with covariance matrix I.
Let L be a unique lower-triangular (Cholesky) factor of Σ, a p × p positive definite
covariance matrix such that LL′ = Σ.
Then

z∗ = Lz (25)

will have a multivariate normal distribution with mean 0 and covariance matrix Σ.
Consequently, if the columns of an n × p sample data matrix Z represent n observations
from a MVN(0, I) distribution, then

Z∗ = ZL′ (26)

will represent n observations from a MVN(0,Σ) distribution, where Σ = LL′.
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This very straightforward situation with multivariate normal data is much more
complicated when non-normal continuous variates are simulated.
For example, suppose we create a set of independent nonnormal variables with the desired
(marginal) skewnesses and kurtoses using the PT3 method, and then use the above
approach to correlate them.
Unfortunately, during the matrix multiplication process, all (except for the first, assuming
a Cholesky factor is used) nonnormal variables become linear combinations of the others,
so their skewness and kurtosis will be altered by the “central limit effect”, and will no
longer have the desired value.
Conversely, suppose that we first generate multivariate normal random variables with the
desired correlations as discussed above, and then apply non-normalizing transforms to the
individual variables to produce desired skewnesses and kurtoses. Unfortunately, the
correlations between the variables will be altered by the nonlinear transformations applied
to them.
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Fortunately, however, this influence of nonlinear power transformations on the correlations
can be calculated and taken into account.
The f̊inal correlation ρY between two nonnormal variables can be expressed as a function
of the intermediate correlation ρZ between the two normal variables and their
non-normalizing transforms (Li and Hammond, 1975):

ρY =

∫ ∞
−∞

∫ ∞
−∞

f (Z1)g(Z2)f12dZ1dZ2 (27)

where f (Z1) is the non-normalizing transform for the first variable, g(Z2) is the
non-normalizing transform for the second variable, and

f12 =
1

2π
√

1− 2ρ2z
exp(−Z 2

1 − 2ρZZ1Z2 + Z 2
2

2(1− ρ2Z )
) (28)

is the standard normal bivariate density.
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A popular remedy that takes advantage of Equations 25–26 while successfully generating
marginal variates with a desired skewness and kurtosis is to

1 Find an intermediate correlation matrix for the random variables z∗ in Equation 25.
2 Subject the correlated standard normal random scores Z∗ in Equation 26 to the

non-normalizing transformation.

The intermediate correlation matrix is chosen so that the final correlation matrix — the
correlation matrix between the nonnormal random variables, after applying the
non-normalizing transform — is as desired.
This transform-and-calculate (TC) principle, used to extend PT3 to the multivariate case,
is demonstrated in detail for the bivariate PT3 in the following slides.
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The first step of the TC principle applied to PT3 is to find the Fleishman coefficients that
are needed to create nonnormal random variables with desired skewnesses and kurtoses.
Nexty, one needs to find the required intermediate correlation matrix. As a special case of
Equation 27, the correlation ρY between two nonnormal Fleishman variables Y1 and Y2

can be expressed as (Equation 11 in Vale and Maurelli, 1983):

ρY = ρZ (a11a12 + 3a11a32 + 3a31a12 + 9a31a32) + 2a21a22ρ
2
Z + 6a31a32ρ

3
Z (29)

where ρZ is the intermediate correlation between two standard normal random variables,
a11, a21, and a31 are the transformation coefficients for Y1, and a12, a22, and a32 are the
transformation coefficients for Y2.
ρZ can therefore be found by treating ρY and the aij as known quantities, and
numerically solving Equation 29 for the unknown ρZ .
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Once ρZ is found, Σ∗ is created as

Σ∗ =

[
1 ρZ
ρZ 1

]
(30)

In the next step, two standard normal random variables are correlated using the
intermediate correlation matrix from Equation 30 in the process described in Equations
25–26.
Finally, 3rd order polynomial transformations as in Equation 21 are applied individually to
the now correlated standard normal variables, using previously calculatedtransformation
coefficients a01, a11, a21, a31, a02, a12, a22, and a32.
The two variables now have the desired marginal skewness and kurtosis, and also have the
desired final correlation ρY .
Generalizing to a set of three or more correlated nonnormal variables is straightforward.
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Here is an example.
Assume we want to create two nonnormal random variables Y1 and Y2 with skewnesses
γ11 = γ12 = 0, kurtoses γ21 = γ22 = 25, and final correlation ρY = 0.30. (This has been
a popular choice in the psychometric literature).
The skewness-kurtosis combination γ1 = 0, γ2 = 25 can be produced as
Y = 0 + 0.2553Z + 0Z 2 + 0.2038Z 3, i.e., with a coefficient vector
a = [0.0000, 0.2553, 0.0000, 0.2038]′.
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Inserting these coefficients (using the same set for both Y1 and Y2) into Equation 29, the
relationship between final and intermediate correlation is now:

ρY = 0.750904ρZ + 0.249096ρ3Z (31)

Setting ρY = 0.30, we can numerically solve for ρZ , obtaining a result of ρZ = 0.3812.
Next we postmultiply two independent standard normal random variables by the Cholesky
decomposition of a correlation matrix with off-diagonal element ρZ = 0.3812.
Finally, we apply the non-normalizing transforms, changing the normal variables to
nonnormal counterparts, and also changing the correlation from 0.3812 to the desired
final value of 0.30.
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The Vale-Maurelli method appears to be straightforward if slightly intricate.
However, a number of issues emerge in its application, several of which were highlighted
by Kraatz (2011):

1 Although a specified skewness-kurtosis combination may not be possible, numerical software
might generate a transform formula without an error indication, leading to publication of
skewness-kurtosis “conditions” that were not actually achieved.

2 For a given skewness-kurtosis combination for two variables, a given correlation may not be
possible, even though the skewness-kurtosis combination is.

3 The range of possible correlations will usually be different for different sets of coefficients
yielding identical skewness and kurtosis.

4 In some situations, two different bivariate normal distributions will yield identical correlations
between transformed variables.

5 Some simulated distributions have extremely odd shapes, raising questions about their
representativeness.
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As an example of these phenomena, consider the case in which we simulate a bivariate
distribution with one normal and one nonnormal marginal.
Assume γ1 = 1 and γ2 = 15 for the nonnormal distribution.
The choice of coefficients for the normal distribution is obvious (aN) and for the
nonnormal distribution, we choose a31 from Equation 32 below:

aN = [ 0 1 0 0 ]′

a31 = [ −0.1701 1.5347 0.1701 −0.3068 ]′

a32 = [ −0.0773 0.4455 0.0773 0.1570 ]′
(32)

Substituting the coefficients into Equation 29 yields

ρY = ρZ (a11a12 + 3a11a32 + 3a31a12 + 9a31a32) + 2a21a22ρ
2
Z + 6a31a32ρ

3
Z

= ρZ (a12 + 3a32) (33)

= ρZ (1.5347− 0.9205)

= 0.6142ρZ

Figure 2 on the next slide depicts this relationship between final and intermediate
correlation.
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Figure 2 : Relationship I Between Intermediate and Final Correlation for a Bivariate PT3 Distribution
with γ11 = 0, γ12 = 1, γ21 = 0 and γ22 = 15
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Inserting the entire possible range of values for ρZ into Equation 33 only produces
minimum and maximum values for the final correlation ρY between −0.6142 and 0.6142.
For this choice of marginal skewnesses and kurtoses and these sets of coefficients, it is
impossible to create a final correlation of, say, 0.80 between Y1 and Y2.
Everything else being equal, had we chosen the same coefficients for the normal
distribution but a32 for the nonnormal distribution, the relationship between ρY and ρZ
would have been as in Equation 34 and Figure 3:

ρY = ρZ (a12 + 3a32)

= ρZ (0.4455 + 0.4710) (34)

= 0.9166ρZ
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Figure 3 : Relationship II Between Intermediate and Final Correlation for a Bivariate PT3 Distribution
with γ11 = 0, γ12 = 1, γ21 = 0 and γ22 = 15
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The lesson from the preceding example is that transformation coefficients that produce
the same skewness and kurtosis are not equivalent in the range of correlations they can be
used to simulate.
One set of coefficients may allow you to accomplish your objective, while another may not.
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Multivariate distributions and even bivariate distributions are considerably more complex
than univariate ones.
For example, a bivariate distribution has a total of two 1st order moments (the two
means), three 2nd order moments (two variances and one covariance) and four 3rd order
moments: ρ111 = γ11, skewness of variable 1, ρ112, ρ122, and ρ222 = γ12, skewness of
variable 2. It also has five 4th order moments, six 5th order moments, and so forth.
Hence, any bivariate distribution has

∑4
i=1(i + 1) = (2 + 3 + 4 + 5) = 14 moments of up

to 4th order. PT3, PT5, and the g -and-h distribution provide control over nine of these
moments, while leaving the other five moments (ρ112, ρ122, ρ1112, ρ1122, and ρ1222)
uncontrolled.
Of course, any other moments of yet higher order remain altogether uncontrolled as well,
except by PT5, which controls univariate 5th and 6th order moments.
For any bivariate distribution, there are

M2 + 3M

2
(35)

moments up to Mth order.
For example, if we are interested in the first M = 4 moments, we have∑4

i=1(i + 1) = (2 + 3 + 4 + 5) = 14 moments in total. PT3, PT5, and the g -and-h
distribution provide control over nine of these moments: Univariate means, variances,
skewnesses, kurtoses, and the bivariate covariance, while leaving the other five moments
(ρ112, ρ122, ρ1112, ρ1122, and ρ1222) uncontrolled.
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What does this imply in practice? Even with equal skewness and kurtosis, different
non-normalizing transforms may lead to univariate distributions with noticeably different
shapes.
We will find that this effect can be dramatically exponentiated for distributions with more
than one dimension. We create a bivariate PT3 nIM distribution with γ11 = 2.5,
γ21 = 11.5 for Y1 and γ12 = 1.4, γ22 = 5.6 for Y2, and ρY = .46. For Y1, the distinctly
different coefficient sets are:

a51 = [ −0.2801 0.6407 0.2801 0.0846 ]′

a52 = [ −0.6466 −0.6194 0.6466 0.0976 ]′
(36)

For Y2, we have

a61 = [ −0.4281 1.1984 0.4281 −0.1770 ]′

a62 = [ −0.1594 0.7400 0.1594 0.0726 ]′
(37)

Combining each set for Y1 with the sets of Y2, we obtain the four distributions plotted in
Figure 4.
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The shapes in Figure 4 are strikingly different from one another, despite all having the
same marginal skewnesses and kurtoses and the same correlation and all being produced
with what has been portrayed in the literature as a single unique method for simulating
nonnormal distributions.
Notice that the only distribution with a “well-behaved” shape is the one constructed from
the two transforms a51 and a62 (which are both monotonic).
The distribution created from the two nonmonotonic transforms has a somewhat
box-shaped form.
The distribution in Figure 4(d) almost looks like a mixture of two relatively normal
distributions with high correlations in opposite directions.
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Figure 4 : Odd-shaped PT3 Distributions
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Simulating Non-Perfect Fit

Simulating Non-Perfect Fit

Models are only approximations to reality.
To fit perfectly, models require statistical populations to be confined to a subset of the
parameter space. We first learned this fact when diagramming the parameter space for
the null hypothesis that µ = 100 in Psychology 310.
We learned it again when solving by elimination for the model constraints in our Very
Simple Model as a prelude to discussing how Spearman derived the tetrad difference
formulae in factor analysis.
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Simulating Non-Perfect Fit

Simulating Non-Perfect Fit

There is an important hidden lesson in the tetrad differences discussion.
The expression of a model in terms of Σ-constraints is more fundamental than its
expression in terms of data equations.
Different models (or, if you prefer, data generating systems) can imply identical
Σ-constraints.
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Simulating Non-Perfect Fit

Simulating Non-Perfect Fit

Structural equation models seem “reasonable” when expressed as a system of
data-generating equations.
When expressed in their more fundamental form as a set of Σ-constraints, they seem far
less likely to be true.
For a tetrad difference to be exactly zero would require a remarkable coincidence of
correlations, or so it would seem.
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Simulating Non-Perfect Fit

Simulating Non-Perfect Fit

If a model is “wrong,” when what, indeed, should we be estimating?
Many Monte Carlo studies have concentrated on a very specific, very artificial situation,
in which a more complex model is “right,” and a simpler “wrong” model is missing some
of the paths in this more complex model.
In this case, it seems clear that what we “should” be estimating is the more complex,
perfect, “correct” model, so it is easy to calculate how “wrong” certain parameter
estimates are when the simpler, incorrect model is fit.
We could also track how well “model modification indices” are diagnostic of the missing
paths in such a situation.
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Is this “wrong path” approach to simulation of imperfect model fit realistic and
reasonable?
In what ways does it fall short (C.P.)
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Simulating Non-Perfect Fit
The Cudeck-Browne Approach

Cudeck and Browne (1992) discussed a method for producing a covariance matrix that has
a specific “population discrepancy function” and a known set of minimizing parameters.
With this method, one could, for example, produce a covariance matrix that, when fit
with the method of maximum likelihood and the 9x3 confirmatory factor model discussed
earlier, converges to loadings of 0.20, with a discrepancy function of 0.24.
With this covariance matrix, one could simulate various non-normal distributions using
the method of Vale and Maurelli (1983).
Combining the Cudeck-Browne method with the Vale-Maurelli method would allow one to
assess performance across a wide range of distributions, sample sizes, and departures from
perfect fit.
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The Cudeck-Browne Approach

Suppose we are seeking a covariance matrix such that the maximum likelihood discrepancy
function FML(S,M(γ)) has a desired value δ and a function minimizer of γ = γ0.
This covariance is constructed in the form Σ = M(γ) + E.
As an example, suppose a standardized single common factor model with 10 observed
variables has unique variances of

diag(Θ) =
[

0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20
]′

(38)

Since the common factor pattern λ has only one column, each element λi must be equal
to
√

1− θii .
So the first factor loading would be

√
1− 0.65 =

√
0.35 = 0.592. The second factor

loading would be
√

0.40 = 0.632, etc.
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Simulating Non-Perfect Fit
The Cudeck-Browne Approach

Although the Cudeck-Browne method produces a covariance matrix that has a desired
non-zero discrepancy, we can modify the method to yield a desired value of the RMSEA
fit statistic.
Since the population RMSEA is defined as

R =

√
FML

ν
(39)

where ν is the model degrees of freedom, we have FML = R2ν.
So if we desired an RMSEA of 0.08, recalling that the degrees of freedom for a 10
variable single factor model are

ν = 1/2(p −m)2 − (p + m) = 1/2(10− 1)2 − (10 + 1) = 35 (40)

we would need a discrepancy function of

FML = 35× 0.082 = 36× 0.0064 = 0.224 (41)
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Simulating Non-Perfect Fit
The Cudeck-Browne Approach

The 10× 10 correlation matrix on the next slide, when analyzed with maximum likelihood
and a single factor model, has a minimum discrepancy function of precisely 0.224, with
factor loadings and unique variances as given on the previous slide.
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1
0.44085941 1
0.45988350 0.47473424 1
0.47633813 0.49250677 0.49877024 1
0.48660372 0.51326721 0.53908157 0.55234007 1
0.48737942 0.51821651 0.54659467 0.57127547 0.59429953 1
0.47819835 0.51093743 0.55739992 0.55373021 0.60080321 0.62803735 1
0.49425287 0.52885488 0.54381099 0.59701778 0.61766487 0.63931372 0.65937825 1
0.47212945 0.51767502 0.56071803 0.58790485 0.61867055 0.65404297 0.69722677 0.71308116 1
0.47862366 0.51838994 0.55855550 0.60682264 0.63293554 0.67473674 0.72888983 0.77313132 0.82674833 1


(42)
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Simulating Non-Perfect Fit
The Cudeck-Browne Approach

This matrix is online in a text file called PopMatrix_08_1.csv.
Suppose we wanted to do a brief Monte Carlo study of the performance of a single factor
model with this matrix as the population Σ, and multivariate normal data.
How would we go about doing this? (C.P.)
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There are several alternatives, but if we wanted to employ the built-in Monte Carlo
capabilities in Mplus without augmenting any of the data that are collected, we would
face an immediate inconvenience.
It would make sense for Mplus to have a POPULATIONSIGMA command in its
MODEL POPULATION section. This way, the user could simply input the matrix from a file
or add it to the command section.
However, it seems that Mplus does not have such a command.
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Directly Specifying a Population Covariance Matrix

One straightforward approach to modeling a directly specified Σ is to construct a model
for it in the MODEL POPULATION: section of the input file.
Suppose, for example, you wished to model a population covariance matrix of

Σ =

 1.0
0.2 1.0
0.2 0.3 1.0

 (43)

We can convey this model to Mplus as follows:

MODEL POPULATION:

Y2 WITH Y1@0.2

Y3 WITH Y1@0.2

Y3 WITH Y2@0.3

Y1@1

Y2@1

Y3@1
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Unfortunately, in general such a specification would, for a p × p covariance matrix, have
p(p + 1)/2 + 1 lines of code.
So, for example, if we wished to specify the 10× 10 covariance matrix with the
discrepancy function of 0.224, we would need to input 56 lines of code, many of which
include a lengthy decimal number.
Clearly, constructing such code is a job for a computer.
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Online is a code file MplusCovGenerator.R containing a function
MplusGenerateModelForSigma.
This function takes an input covariance matrix in either full form, or as a vector
containing the lower triangular elements.
It generates an output file with the desired commands, which can then be integrated into
an Mplus input file for the Monte Carlo run.
Let’s digress to take a look at the function and its use.
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The integrated file is online as MCTEST.inp.
Running it, we discover that the mean parameter estimates and the mean RMSEA are
right on the population values.
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